

YDLIDAR TX20 使用手册

文档编码: 01.13.001002

	E	ł

目录
YDLIDAR TX20 开发套件2
开发套件2
Windows 下的使用操作
设备连接2
驱动安装3
使用评估软件4
开始扫描5
数据保存6
软件升级6
Linux 下基于 ROS 的使用操作7
设备连接7
ROS 驱动包安装7
RVIZ 安装
RVIZ 查看扫描结果8
修改扫描角度问题
使用注意9
环境温度9
环境光照10
供电需求10
修订11

YDLIDAR TX20 开发套件

YDLIDAR TX20(以下简称: TX20)的开发套件是为了方便用户对 TX20进行性能评估和早期快速开发所提供的配套工具。通过 TX20的开发套件,并配合配套的评估软件,便可以在 PC 上观测到 TX20 对所在环境扫描的点云数据或在 SDK 上进行开发。

开发套件

TX20的开发套件有如下组件:

表1 YDLIDAR TX20 开发套件说明

组件	数量	描述
TX20 激光雷达	1	标准版本的 TX20 雷达
USB 数据线	1	配合 USB 转接板使用,连接 TX20 和 PC 既是供电线,也是数据线
USB 转接板	1	该组件实现 USB 转 UART 功能,方便 TX20、PC 快速互联, 另外提供用于辅助供电的 MicroUSB 电源接口(PWR)
PH2.0-8P 端子线	1	该组件满足用户在多平台环境下的开发需求

注: USB 转接板有两个 MicroUSB 接口: USB_DATA、USB_PWR。

USB_DATA: 数据供电复用接口,绝大多数情况下,只需使用这个接口便可以满足供电和通信需求。

USB_PWR: 辅助供电接口,某些开发平台的USB 接口电流驱动能力较弱,这时就可以使用辅助供电。

WINDOWS 下的使用操作

设备连接

在 windows 下对 TX20 进行评估和开发时, 需要将 TX20 和 PC 互连, 其具体过程如下:

图 1 YDLIDAR TX20 设备连接 STEP 1

图 2 YDLIDAR TX20 设备连接 STEP 2

先将转接板和 TX20 接好,再将 USB 线接到转接板和 PC 的 USB 端口上,注意 USB 线的 Micro 接口接 USB 转接板的 USB_DATA。

部分开发平台或 PC 的 USB 接口的驱动电流偏弱,TX20 需要接入+5V 的辅助供电,否则雷达工作会出现异常。

图 3 YDLIDAR TX20 辅助供电

驱动安装

在 windows 下对 TX20 进行评估和开发时,需要安装 USB 转接板的串口驱动。本套件的 USB 转接板采用 CP2102 芯片实现串口(UART)至 USB 信号的转换。其驱动程序可以在我司官网下载,或者从 Silicon Labs 的官方网站中下载:

http://eaibot.com/

http://cn.silabs.com/products/development-tools/software/usb-to-uart-bridge-vcp-drivers

解压驱动包后,执行 CP2102 的 Windows 驱动程序安装文件(CP210x_VCP_Windows 下的 exe 文件)。请根据 windows 操作系统的版本,选择执行 32 位版本(x86),或者 64 位版本 (x64)的安装程序。

<mark>x</mark> 64	2013/10/25 11:39	文件夹	
- x86	2013/10/25 11:39	文件夹	
職 CP210xVCPInstaller_x64.exe	2013/10/25 11:39	应用程序	1,026 KB
💐 CP210xVCPInstaller_x86.exe	2013/10/25 11:39	应用程序	901 KB
🖷 dpinst.xml	2013/10/25 11:39	XML 文档	12 KB
ReleaseNotes.txt	2013/10/25 11:39	文本文档	10 KB
SLAB_License_Agreement_VCP_Windo	2013/10/25 11:39	文本文档	9 KB
🧼 slabvcp.cat	2013/10/25 11:39	安全目录	12 KB
📓 slabvcp.inf	2013/10/25 11:39	安装信息	5 KB

图 4 YDLIDAR TX20 驱动版本选择

双击 exe 文件,按照提示进行安装。

图 5 YDLIDAR TX20 驱动安装过程

安装完成后,可以右键点击【我的电脑】,选择【属性】,在打开的【系统】界面下,选择 左边菜单中的【设备管理器】进入到设备管理器,展开【端口】,可看到识别到的 USB 适配 器所对应的串口名,即驱动程序安装成功,下图为 COM3。(注意要在 TX20 和 PC 互连的情 况下检查端口)

图 6 YDLIDAR TX20 驱动安装检查

使用评估软件

YDLIDAR 提供了 TX20 实时扫描的点云数据可视化软件 PointCloud Viewer,用户使用该软件,可以直观的观察到 TX20 的扫描效果图。YDLIDAR 上提供了 TX20 实时点云数据和实时扫描 频率,同时可以读取到 TX20 的版本信息,并且可以离线保存扫描数据至外部文件供进一步 分析。

使用 YDLIDAR 前,请确保 TX20 的 USB 转接板串口驱动已安装成功,并将 TX20 与 PC 的 USB 口互连。运行评估软件: PointCloudViewer.exe,选择对应的串口号和型号,以及是否选 择心跳功能。同时,用户也可以根据个人情况,选择语言和软件风格(右上角)。

图 7 YDLIDAR TX20运行评估软件

确认后,客户端的页面如下:

图 8 客户端软件界面

开始扫描

在雷达启动供电后,TX20会自动启动扫描功能,客户端会自动出图。如下图所示:

图9雷达扫描点云显示

数据保存

在雷达扫描时,点击,按提示保存点云数据,系统便会按照如下格式保存扫描一圈的点云 信息。

angle:9.5469	,	distance:4654
angle:9.8125	,	distance:4709
angle:10.094	,	distance:4763
angle:10.625	,	distance:4947
angle:11.125	,	distance:6204
angle:11.203	,	distance:0
angle:11.391	,	distance:6253
angle:11.766	,	distance:0
angle:12.609	,	distance:0
angle:12.719	,	distance:7895

图 10 点云数据保存格式

软件升级

客户端软件会进行版本更迭,用户可以更新到最新版本使用,以获得更佳的体验。

点击系统设置,选择软件更新,如下图:

😢 附加功能	?	\times
模组配置 底座配置 电压检测 固件升级 系统更新		
O no proxy		
• use system proxy setti use custom proxy sttin		
proxy ip address		
proxy user name		
proxy password		
检测更新		
		r\$
100%		8

图 11 系统更新页面

选择如上图配置,点击检测更新,如无新版本,系统会提示无需更新;当有新版本,软件版本信息会填入信息框,点击。按件,对客户端软件进行更新。

LINUX 下基于 ROS 的使用操作

Linux 发行版本有很多,本文仅以 Ubuntu16.04、Kinetic 版本 ROS 为例。

设备连接

Linux 下, TX20 和 PC 互连过程和 Windows 下操作一致,参见 Window 下的设备连接。

ROS 驱动包安装

在进行以下操作前,请确保 Ubuntu16.04、Kinetic 版本 ROS 环境安装正确。

具体步骤如下:

(1) 使用命令创建 ydlidar_ws 工作空间,并将 TX20 资料包内的 ROS 驱动包 ydlidar 复制到 ydlidar_ws/src 目录下,切换到 ydlidar_ws 工作空间下并重新进行编译。

```
$ mkdir -p ~/ydlidar_ws/src
$ cd ~/ydlidar_ws
$ catkin make
```

(2) 编译完成后,添加 ydlidar 环境变量到~/.bashrc 文件中,并使其生效。

```
$ echo "source ~/ydlidar_ws/devel/setup.bash" >> ~/.bashrc
$ source ~/.bashrc
```


(3) 为TX20的串口增加一个设备别名 /dev/ydlidar。

```
$ cd ~/ydlidar_ws/src/ydlidar/startup
$ sudo chmod +x initenv.sh
$ sudo sh initenv.sh
```

RVIZ 安装

(1) 联网安装依赖包。

```
$ sudo apt-get install python-serial ros-kinetic-serial g++ vim \
  ros-kinetic-turtlebot-rviz-launchers
```

(2) 若安装有问题,先更新源缓存再重新安装。

```
$ sudo apt-get update
```

RVIZ 查看扫描结果

运行 launch 文件, 打开 rviz 查看 TX20 扫描结果, 如下图所示:

```
      $ roslaunch ydlidar lidar_view.launch
```

修改扫描角度问题

运行 launch 文件看到的扫描数据,默认显示的是 360 度一圈的数据,若要修改显示范围,则 修改 launch 内的配置参数,具体操作如下:

(1) 切换到 lidar.launch 所在的目录下,并使用 vim 编辑 lidar.launch,其内容如图所示:

图 12 YDLIDAR TX20 RVIZ 运行显示

- \$ roscd ydlidar/launch
- \$ vim lidar.launch

klaunch>
<node name="ydlidar_node" output="screen" pkg="ydlidar" type="ydlidar_node"></node>
<param name="port" type="string" value="/dev/ydlidar"/>
<param name="baudrate" type="int" value="115200"/>
<param name="frame_id" type="string" value="laser_frame"/>
<param name="angle_fixed" type="bool" value="true"/>
<param name="intensities" type="bool" value="false"/>
<param name="angle_min" type="double" value="-180"/>
<param name="angle_max" type="double" value="180"/>
<param name="range_min" type="double" value="0.08"/>
<param name="range_max" type="double" value="8.0"/>
<param name="ignore_array" type="string" value=""/>
<node <="" name="base_link_to_laser4" pkg="tf" td="" type="static_transform_publisher"></node>
args="0.2245 0.0 0.2 0.12 0.0 0.0 /base_footprint /laser_frame 40" />

图 13LIDAR.LAUNCH 文件内容

(2) TX20 雷达坐标在 ROS 内遵循右手定则,角度范围为[-180,180], "angle_min"是开始 角度,"angle_max"是结束角度。具体范围需求根据实际使用进行修改。

图 14YDLIDAR TX20 坐标角度定义

使用注意

环境温度

当 TX20 工作的环境温度过高或过低,会影响测距系统的精度,并可能对扫描系统的结构产生损害,降低雷达的使用寿命。请避免在高温(>40 摄氏度)以及低温(<0 摄氏度)的条件中使用。

环境光照

TX20的理想工作环境为室内,室内环境光照(包含无光照)不会对TX20工作产生影响。但 请避免使用强光源(如大功率激光器)直接照射TX20的视觉系统。

如果需要在室外使用,请避免 TX20 的视觉系统直接面对太阳照射,这将这可能导致视觉系统的感光芯片出现永久性损伤,从而使测距失效。

TX20标准版本在室外强烈太阳光反射条件下的测距会带来干扰,请用户注意。

供电需求

在开发过程中,由于各平台的 USB 接口或电脑的 USB 接口的驱动电流可能偏低,不足以驱动 TX20,需要给 TX20 接入+5V 的外部供电,不建议使用手机充电宝,电压纹波较大。

修订

日期	版本	修订内容
2019-09-11	1.0	初撰